Reducing the dispersion error in the digital waveguide mesh using interpolation and frequency-warping techniques

نویسندگان

  • Lauri Savioja
  • Vesa Välimäki
چکیده

The digital waveguide mesh is an extension of the onedimensional (1-D) digital waveguide technique. The mesh can be used for simulation of twoand three-dimensional (3-D) wave propagation in musical instruments and acoustic spaces. The original rectangular digital waveguide mesh algorithm suffers from direction-dependent dispersion. Alternative geometries, such as the triangular mesh, have been proposed previously to improve the performance of the mesh. In this paper, we show that the dispersion problem may be reduced using various other techniques. These methods include multidimensional interpolation, optimization of the point-spreading function, and frequency warping. We compare the accuracy and computational complexity of these techniques in the two-dimensional (2-D) case and conduct numerical simulations of a membrane. A rectangular mesh using second-order Lagrange interpolation can be implemented without multiplications, but its accuracy is worse than that of other enhanced structures. The most accurate technique in terms of the relative frequency error is the warped triangular mesh whose maximum error is 0.6%. The warped rectangular mesh with optimized weighting coefficients is not as exact, but still offers a 1.2% accuracy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reduction of the dispersion error in the interpolated digital waveguide mesh using frequency warping

The digital waveguide mesh is an extension of the one-dimensional digital waveguide technique. The mesh is used for simulation of twoand three-dimensional wave propagation in musical instruments and acoustic spaces. The rectangular digital waveguide mesh algorithm suffers from direction-dependent dispersion. By using the interpolated mesh, nearly uniform wave propagation characteristics are obt...

متن کامل

Interpolated and Warped 2-d Digital Waveguide Mesh Algorithms

Interpolated and warped digital waveguide mesh algorithms have been developed to overcome the problem caused by direction and frequency-dependence of wave travel speed in digital waveguide mesh simulations. This paper reviews the interpolation methods applicable in the two-dimensional case. The bilinear interpolation technique and two other approaches are briefly recapitulated. The use of 2-D q...

متن کامل

Interpolated 3-D digital waveguide mesh with frequency warping

An interpolated 3-D digital waveguide mesh algorithm is elaborated. We introduce an optimized technique that improves a formerly proposed interpolated 3-D mesh and renders the 3-D mesh more homogeneous in different directions. Frequency-warping techniques are used to shift the frequencies of the output signal of the mesh in order to cancel the effect of dispersion error. The extensions improve ...

متن کامل

Full Mesh Warping Techniques

This paper discusses methods for the elimination of dispersion in a digital waveguide mesh. As in previous methods, a highly isotropic waveguide mesh is chosen as a starting point, reducing the problem to compensation of frequency-dependent dispersion. For this purpose, as an alternative to Savioja and Välimäki’s technique of frequency-warping the input/output signals, we propose (1) inhomogene...

متن کامل

Interpolated rectangular 3-D digital waveguide mesh algorithms with frequency warping

Various interpolated three-dimensional (3-D) digital waveguide mesh algorithms are elaborated. We introduce an optimized technique that improves a formerly proposed trilinearly interpolated 3-D mesh and renders the mesh more homogeneous in different directions. Furthermore, various sparse versions of the interpolated mesh algorithm are investigated, which reduce the computational complexity at ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IEEE Trans. Speech and Audio Processing

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2000